Bayesian Exploratory Factor Analysis.

نویسندگان

  • Gabriella Conti
  • Sylvia Frühwirth-Schnatter
  • James J Heckman
  • Rémi Piatek
چکیده

This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Item Response Modeling in Mplus: A Multi-Dimensional, Multi-Level, and Multi-Timepoint Example

This chapter presents item response modeling techniques in the Mplus program (Muthén & Muthén, 2012) through the analysis of an example with three features common in behavioral science applications: multiple latent variable dimensions, multilevel data, and multiple timepoints. The dimensionality of a measurement instrument with categorical items is investigated using exploratory factor analysis...

متن کامل

Bayesian group latent factor analysis with structured sparse priors

Latent factor models are the canonical statistical tool for exploratory analyses of lowdimensional linear structure for an observation matrix with p features across n samples. We develop a Bayesian group factor analysis (BGFA) model that extends the factor model to multiple coupled observation matrices. Our model puts a structured Bayesian hierarchical prior on the joint factor loading matrix, ...

متن کامل

Bayesian group latent factor analysis with structured sparsity

Latent factor models are the canonical statistical tool for exploratory analyses of lowdimensional linear structure for an observation matrix with p features across n samples. We develop a Bayesian group factor analysis (BGFA) model that extends the factor model to multiple coupled observation matrices. Our model puts a structured Bayesian hierarchical prior on the joint factor loading matrix, ...

متن کامل

Self-Concept Research: Driving International Research Agendas Conceptual Modeling of Self-Rated Intelligence-Profile

The purpose of this study is to explore the psychometric quality of a self-evaluation instrument based on Gardner’s theory of multiple intelligences (1991; 1993; 1995). Self-evaluated intelligence is closely related to a person’s selfconcept and can reflect both general and academic components of it. Our data includes Finnish students from five different universities (N=256). The questionnaire ...

متن کامل

Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of econometrics

دوره 183 1  شماره 

صفحات  -

تاریخ انتشار 2014